Computational Thinking and Experiences of Arithmetic Concepts

Online Seminar Series on Programming in Mathematics Education

Krista Francis, University of Calgary Brent Davis, University of Calgary

July 3, 2020 11:00 EDT

Tying into Hoyles & Ross (2020 June 19)

- ▶ Papert & Constructionism
- ► Overlaps between ...
 - Computational Thinking (abstraction, algorithms, decomposition, pattern recognition) and
 - Mathematics (different representations, geometry structures and relationships, engage in reasoning and problem solving)
- Without good design, computational thinking is only of benefit to advantaged children

- 1. Situating ourselves conceptually
 - Visiting learningdiscourses.com
 - Brushing past Conceptual Metaphor Theory
 - Digging into the concept of "number"
- 2. Introducing the research setting
 - Robotics (coding motion) focus
 - Designed to complement mathematics learning
- 3. Presenting some analyzed video data
 - 9-minute episode, parsed into four pieces
- 4. Offering some culminating assertions and conjectures

Overview

Part 1

Situating ourselves conceptually

Discourses on Learning in Education

learningdiscourses.com

Conceptual Metaphor Theory

Subdiscourse of cognitive sciences Associated with embodied cognition

- Human thought is mainly analogical/associative, rather than logical deductive
- ► Metaphor is a core to human thinking ...
- ... and is especially important for bridging bodily experience and conceptual interpretation.

Conceptual Metaphor Theory

"Grounding Metaphors of Arithmetic"

Four Grounding Metaphor(s) of Arithmetic	An instantiation of "5"	Number as	Matter addressed	
OBJECT COLLECTION		COUNT	How many?	
OBJECT CONSTRUCTION	3456	SIZE	How big?	
MEASURING STICK	mul S 3 4 2 6	LENGTH	How long?	
MOVING ALONG A PATH	<u> </u>	LOCATION	Where?	

All of the metaphors are present in coding motion.

Constructionism (Papert)

"Objects-to-think-with"

- familiar constructs used to grapple with novel situations
- Our goal: render the number line an object-tothink-with ...

Four Grounding Metaphor(s) of Arithmetic	An instantiation of "5"	Number as	Matter addressed
OBJECT COLLECTION		COUNT	How many?
OBJECT CONSTRUCTION	123	SIZE	How big?
MEASURING STICK	interior and gradual	LENGTH	How long?
MOVING ALONG A PATH	!!!!!!!!	LOCATION	Where?

Hypothassertion

- Coding/computational-thinking environments –
 and work with robotic motion in particular are superb spaces to develop number sense ...
- ... partly because multiple instantiations of number are invoked, usually simultaneously ...
- ... which shouldn't be all that surprising, given that computational thinking is an offspring of mathematics.

Part 2

The research setting

Context

- ► Local elementary school
- Weekly robotics classes
- Beginning of Grade 4 (haven't yet formally encountered decimals)
- ► Learning to move robot

How many wheel rotations are needed for the robot to travel 100 cm?

Task

Join in:

Ranking of Metaphors

Which metaphors of number are most appropriate for this task?

- ► To participate go to https://www.menti.com/f989bjbf6g
- ► Choices are count, size, length, location

Results of Audience Voting

Go to www.menti.com and use the code 35 8112

How many wheel rotations to travel 100 cm?

Part 3

Some analyzed video data

Watch for...

See video at https://vimeo.com/313928391

Brief Recap 1

Conceptual Blending Theory

Complement to Conceptual Metaphor

- ► Creative leaps and sophisticated concepts involve a blending of metaphors that results in amplifications of interpretative reach.
- ▶ Blending can happen very quickly ... and, we think, is frequently experienced as the spark of insight, the leap of intuition, the Aha!

Conceptual Blending Theory

See video 2 at https://vimeo.com/317354442

Brief Recap 2

Conceptual Blending Theory

• See Video 3 at https://vimeo.com/319520044

Brief Recap 3

Conceptual Blending Theory

Four Grounding Metaphor(s) of Arithmetic	An instantiation of "5"	Number as	Matter addressed	Number systems made available
OBJECT COLLECTION		COUNT	How many?	Whole Numbers Natural Numbers cardinals
BLEND	1 2 3 4 5 6	RANK	Which?	ordinals
BLEND	1 92 93 94 95 96 97 98 99100 cm	AMOUNT	How much?	large numbers discrete fractions
OBJECT CONSTRUCTION	1 2 3 4 5 6	SIZE	How big?	continuous fractions
MEASURING STICK	men 1 2 3 4 5 6	LENGTH	How long?	Rational Numbers Irrational Numbers Integers
MOVING ALONG A PATH	*************************************	LOCATION	Where?	Real Numbers Imaginary Numbers Complex Numbers
BLEND	5	REIFICATION	What?	Any/all of the above

See video at https://vimeo.com/325933850

Brief Recap 4

Occurrence of metaphors over time

We think this is a common and important marker of good-enough common understanding (or total bafflement).

Appropriate instantiations for task were *location* and *length*.

Part 4

Some assertions & conjectures

- Coding is an offspring of mathematics; it always already involves powerful and sophisticated conceptual blends of concepts.
- ► The number line is perhaps the most powerful instantiation for number, and coding motion supports rapid familiarization, robust understanding, and flexible usage.
- ► Effective pedagogy in enabled by nuanced pre-understanding of which instantiations to invoke when.

Contact

- kfrancis@ucalgary.ca
- brent.davis@ucalgary.ca