Module 5: Investigation 1 Polygon Fireworks, Night Skyline

This investigation focuses on developing and building pupils' understanding of variable through the creation of polygon firework patterns. The initial investigation recalls the polygon patterns from Year 5 placing a greater focus on the use of an unknown through "ask and answer" to vary different attributes of the polygon patterns.

From a concept development perspective, the answer block is distanced from its companion ask block within the script by prompting the pupil to vary aspects of the polygon. Variable development continues as pupils realise the limitations of "ask and answer" and give a name to a value by defining a user variable for the skyline towers.

Activity 5.1.1 - Ask and Answer
Activity 5.1.2 - Unplugged: Polygon Predictions
Activity 5.1.3 - Naming Values

- Activity 5.1.4 - The Sky at Night

Scratch starter project	5-Polygon Firework
	5-Polygon Firework INT1
	5-Polygon Firework INT2
	5-Polygon Firework FINAL

Links to Primary National Curriculum

Curriculum Objectives	LINK WITH SCRatchMaths
Mathematics Solve problems, including missing number problems, using multiplication and division Use simple formulae Pupils calculate the perimeter of rectangles and related composite shapes Find all factor pairs of a number Draw 2D shapes using given dimensions and angles Distinguish between regular and irregular polygons (KS3) Work with experiments that involve random numbers Describe positions on the full coordinate grid	Pupils are required to discuss and build simple formula which incorporates multiple variables and involves multiplication and division to create their polygon fireworks. [Extension] As an extension pupils are asked to build a script for their sprite to calculate and say the perimeter of the polygon it has drawn. Pupils are prompted to recall factor pairs of 360°. Pupils are required to use variables to specify the side length and angle of a generalised polygon. Pupils are asked to discuss what is the same and what is different between regular and irregular polygons. [Extension] Pupils build scripts that randomly position polygon fireworks and towers of squares within a set area. Pupils are required to use their knowledge of the full coordinate grid to position their polygons and towers.

Module 5 • Investigation 1 • Activity 5.1.1
Ask and Answer

Learning Objectives

Explore how to use the ask and answer blocks to draw different types of regular polygons.
Explain what is the same and what is different between regular and irregular polygons.

Activity Instructions

Mathematics Connections

Pupils open project 5-Polygon Firework, Save as a copy (online) or Save as (offline) and rename. The final version of this project at the end of Activity 5.1.1 will be 5-Polygon Firework INT1.
(1) Pupils explore the ask and answer blocks: they keep them isolated, click the ask block and type in the answer. Where is the text of the answer (the value) stored? Pupils click the answer block to find out. They also click the check box next to the answer block to see its small monitor window in the stage.
(2) Pupils build a script: When the Beetle is clicked, it will ask What is your name? When they answer and press Enter, the Beetle will greet them by the name, using the say block with the answer. They explore the join word1 word2 block to build a sentence for nicer greeting.

Hello Alamin

(3) Pupils modify the script: When the Beetle is clicked, it asks what pen size it should use, then sets it and draws a line, a square, a regular polygon...
4 Pupils modify the script: When clicked, the Beetle asks what size the side of the square (a polygon) should be.
continues on the next page

```
ask Give me a number. and wait
```

55
answer answer

Note that through the answer block we are making the next step towards the concept of a variable. If we ask for a value and type in e.g. 55 , we can then use the answer block as a variable in an algebraic expression, see above on the right.

Define regular polygon [all sides equal, all angles equal]. Show example of an irregular polygon, e.g. a house shape. What is this called? [an irregular pentagon] Use examples asking: Is this irregular, is this regular? Support pupils to define the regular polygon concept by asking: What it is? and What it is not?

The Beetle turns through the exterior angle of the polygon, it can be helpful to draw as a diagram on the board. Note the connection between the interior and the exterior angle [interior angle + exterior angle $=180^{\circ}$]

Ask pupils to draw a regular hexagon with a perimeter of 180: What is the length of the side? Draw a regular pentagon with a perimeter of 95: What is the length of the side? Draw an equilateral triangle with a perimeter of 100 . Write a simple formula which connects perimeter of hexagon and side length [e.g. perimeter of hexagon $=6 \times$ side length]

Recall factor pairs of 360° from year 5, e.g. 90° and 4 (square); 60° and 6 (hexagon); 72° and 5 (pentagon); 120° and 3 (equilateral triangle). Why is 360° important? [The Beetle turns through 360° as it moves around the polygon.] An irregular polygon will also turn through 360° degrees. This fact is useful when solving geometry problems where an angle is unknown.
Another way of seeing this: For any regular polygon the exterior angle of a regular polygon is the same as the angle that a circle is divided into.

Connections To Y5 ScratchMaths

Activity 5.1.1

Please note the blue numbers on the left link to the numbered steps in the activity instructions
1 The approach we apply here has been introduced in Module 1 and used throughout all Y5 modules: Always build scripts "from inside out", i.e. make sure you understand what each 'bit' does, only then start combining them. The following picture is an example sequence of such steps:

3 In Module 2, Activity 2.1.1 we started using a pen tool of a sprite, with some of its attributes, namely pen colour and pen size. We started using the following Pen blocks:

```
set pen color to }\square\mathrm{ set pen size to (1)
```

Pupils learned how to use the colour picker of the set pen color to ... or alternatively to use the set pen color to number_of_colour block. In the additional materials for Module 2 there is a poster with 40 colours and their number codes. Also there are several other posters and sheets with challenges, one of them exploring the pen size, how to set it, use it and change it.

Note that in Challenge 3: Explore the pen size of the extension materials for Module 2 pupils are encouraged to use a pair of blocks set pen size to ... and change pen size by ..., which enables us to set a certain value and then change it. This is exactly what we will do later in this module with variables.
(8) In Module 2, Activity 2.3.4 we applied another strategy: pupils were provided with several new set random ... blocks, used the blocks in their scripts, and only then explored their definitions by decomposing and modifying. Thus they become familiar with the pick
 random ... to ... block.

Please note the blue numbers on the left link to the numbered steps in the activity instructions
1

If we click the ask block (1a), the sprite asks the question (1b) and an edit line (1c) appears in the stage. We type in our response and press Enter or click the check mark. The answer is then "stored" in the answer report block (1d) and can be used in our script(s). Click the isolated answer block to see the value (1e).

To view the value in the monitor of answer, we can also click the checkbox next to the answer block in the Scripts tab (1f).
The key difference between the answer block and the monitor is that the block can be used in another block as its input (see 2
 below) while the monitor is just visual information for us to read.

Alamin

The answer reporter block can be used as e.g. an input for the say block, see (2a).
So when the Beetle is clicked it will ask the question, then use the answer in the say block to greet us, see (2b).
Explore the join block (in Operators) to join together Hello and the value of the answer. Note that we added a space at the end of Hello so that the two words are separated by a space, see (2c).

Pupils will make their own block jump to random position, thinking about appropriate values for the pick random ... to ... It might be reasonable not to use numbers -240 and 240 but reduce them a bit so that the Beetle does not hit the edge when drawing a polygon.

Module 5 • Investigation 1 • Activity 5.1.2

 Unplugged: Polygon Predictions
Learning Objectives

Envisage the behaviour of a script which uses the ask and answer blocks in different ways. Explain how the corresponding outcome drawing was changed by the answer.

Activity Instructions

Print and distribute the pupil worksheet 5.1.2 or do the activity as a class.
Ask the pupils to explain how the ask and answer blocks are being used in the scripts, what the scripts will produce and whether the scripts can be simplified or improved.

Solution

	The Beetle asks for the pen size, selects a random colour and draws a square using the answer as the pen size. The pen size, however, is unnecessarily set four times - inside the repeat block. It only needs to be set once before the repeat block.

2

The Beetle asks for the pen size and uses the answer in the set pen size ... block. The Beetle then draws a square setting a random colour for each side.

4

The Beetle asks for the pen size but does not use the answer anywhere. It draws a square using random pen colour for each side, setting pen size to 10 inside repeat again and again, instead of setting it just once at the beginning.

The Beetle asks for the pen size and uses the
answer in the set pen size ... block. The Beetle
then draws a square and increases the pen size
by the answer repeatedly after drawing each
side.

Investigation 1
Activity 5.1.2

What To Do

Read the scripts below. For each of them draw the picture it will create and explain in words what each script will do in the box on the right.

Do the following as a class: Each of the scripts below was intended to draw a regular polygon. However, in each script there is a bug. Envisage the original intention, explain the bug and suggest a fix.

ADDITIONAL SUPPORT

(1) In this script the answer is not used in the turn block at all. Therefore instead of drawing a polygon of the answer sides, the Beetle draws only answer sides of an octagon of the fixed size, see (a) below.

2 In this script the angle to turn by is wrong, the Beetle must turn by 360 / answer, that is twice as much as it turns now, see (b).
(3) In this script the question is asked four times, as the ask block is inside repeat. It means that if we do not answer the same value each time, the Beetle will not draw a regular polygon, see (c).
(4) In this script two questions are asked but the answer to the first one is never used for anything but overwritten by the second answer immediately.

Module 5 - Investigation 1 • Activity 5.1.3 Naming Values

Learning Objectives

Explore how to use variables within a script to store different values at the same time.
Explain why we now need variables to draw multiple regular polygons of different sizes.

Activity Instructions

Mathematics Connections

Pupils continue in their own version of project 5-Polygon Firework, or open the 5-Polygon Firework INT1, Save as a copy (online) or Save as (offline) and rename. The final version of this project at the end of Activity 5.1 .3 will be 5-Polygon Firework INT2.
(1) Pupils combine two questions in their Beetle script: the Beetle should first ask about the side length of the polygon to be drawn, then about the number of its sides. However this is not possible using only the tools we have already used. Observing the monitor of the answer block, go through the script step by step so that pupils discover this problem themselves.
(2) To remember the answer of the question asked, we have to give that value a name - to store the value in a variable. Pupils make a variable named side length. They drag two isolated blocks in the scripts area: set side length to ... and the reporter block side length, keep them isolated and explore, observing also the small reporter window. They set different values to the variable. Similarly, they create the second variable number of sides.
(3) Pupils snap two blocks: a question What side length? in the ask block and set side length to ... the answer, run it and explore the value of the side length variable in its small monitor.
(4) Pupils build the whole script from step 1 again, asking two questions and setting each variable to the corresponding answer. Then they modify the polygon block so that it uses these two variables instead of the answer block.
5 Pupils make the third variable number of polygons and add another question in the script: How many polygons? When clicked, the Beetle will ask three questions and draw that many polygons of the size and type as answered by the pupils.

Note that there is only one set variable to ... block with a drop down list of all the variables.

You may prefer to do most of this activity (up to point 4, including) using the empty plain backdrop.

Note that the actual setting of a variable happens only after you run the block - by clicking or running a script containing that block.

AdDITIONAL SUPPORT

Please note the blue numbers on the left link to the numbered steps in the activity instructions
1 Here is an attempt to solve the task but it does not work properly. The answer block appears three times in the script, (1a) and (1c) refer to the second answer and (1b) refers to the first answer. However, as soon as we answer the second question, the first value of answer is lost and replaced by the second answer, see (1d). That is why the Beetle uses value 8 for (1a), (1b), and (1c) and draws (1e) instead of intended (1f).

2 To make a variable we go to the Data group and click the Make a Variable button (see 2a). After we type in the name of the new variable and click OK button (1b), several new blocks appear in the Data group. In this activity we use the reporter block side length and the set side length block.

©

(3)

side length 20

4

The Beetle asks two questions and keeps the answers in variables side length and number of sides. Both variables are then used to draw a polygon, number of sides is used twice. (4b) is an alternative solution using our own block polygon.

5

Variable number of polygons is used as the repeat value, both side length and number of sides variables are used inside the polygon block definition.
Encourage pupils to make and use the polygon block so that the when this sprite clicked script is shorter and more comprehensible.
Alternatively, both pen up and pen down blocks might be moved inside the jump to random position definition.

Additional Support Continued

Choosing names for variables

Although pupils are encouraged - and supported by Scratch - to give any name to variables as they wish, a name can easily become confusing, instead of helpful. To the right, you see a real example from a school: a pupil used the text of the question as the name of a variable, the value. The confusion may occur when the variable is then used in other blocks, see (b) and (c).

What side length?

The name of a variable should reflect what the 'answer' represents. In this case it could be e.g. length or side length...

Extension Ideas

Explore the following Surprising polygons:

Star polygons are drawn by connecting one vertex of a regular polygon to another (nonadjacent one) and repeating until you return to the start (the first one in the row above). To demonstrate what is happening, try walking around a five-pointed star, paying careful attention to your turning. You will see the four walls of the room twice, not once as you would for a regular polygon. You have turned a total of 360° twice, or 720°. All of the star polygons here are found by using multiples of 360°.

Module 5 • Investigation 1 • Activity 5.1.4 The Sky at Night

Learning Objectives

Explore how to draw towers of squares of different heights and in random positions. bridgE to mathematical quantities and formulas to calculate side length or height of a tower.

Activity Instructions

Mathematics Connections

Pupils continue in their own version of project 5-Polygon Firework, or open the 5-Polygon Firework INT2, Save as a copy (online) or Save as (offline) and rename. The final version of this project at the end of Activity 5.1 .4 will be 5-Polygon Firework FINAL.
(1) Pupils make their own block square using the side length variable to draw it. They build a script: when the Beetle is clicked, it will ask What side length? then draw a tower of 10 small identical squares atop each other.
(2) It is not necessary to have only 10 floor towers. Pupils make a new variable number of floors and build a more powerful block tower which will draw a tower of identical squares - defined by the number of floors variable.
(3) Pupils modify their script for the Beetle to first ask for the number of floors and save the answer in variable number of floors. Then it will ask for the side length and save the answer in variable side length and draw a corresponding tower.
(4) [Extension] Pupils generalise their solution so that the script draws a night skyline of many towers of different numbers of floors and different side lengths. The script will repeat the tower part, asking each time for the input value - or, alternatively, setting them at random with an appropriate minimum and maximum. All towers will be scattered at random.

5 [Extension] Pupils create a sky full of polygon fireworks, then a skyline of towers, combining all previous steps. Note that for firework part and for the skyline part it might be useful to have two different jump to random position blocks, so that the whole scene could be created in one click.

Draw out the structure of the towers on the white board, indicate the starting and ending point of the Beetle drawing it. Where do we need to move to start the next floor? What is the algorithm? [first draw a square then move upwards the side length]

Connect the Beetle output with mathematical quantities and formula. E.g. How tall is the tower? Write as a simple formulae. [height of tower $=$ side length $*$ number of floors]
Pose questions: If a tower is 120 tall, and side length of the square is 15, how many floors does it have?

Please note the blue numbers on the left link to the numbered steps in the activity instructions

1. In Module 2, Activity 2.2.1 pupils drew a square and a equilateral triangle. In Activity 2.2.3 they were encouraged to give a name to their square script, making their own square block. In Activity 2.2.4 they made another new block - triangle and were asked to use these new blocks to draw a tower of two squares and also a house.

In the additional support of that activity we suggested to encourage pupils to build a script and run it step by step thinking about the questions below:

- Where will my Beetle finish after drawing the first square?
- Which direction will it point in?
- Where exactly do I want it to draw the second square? Which block will make the Beetle get there?
- Will it then point in the correct direction?
- Where will it finish after drawing the second square?

ADDITIONAL SUPPORT

Investigation 1
Activity 5.1.4

Please note the blue numbers on the left link to the numbered steps in the activity instructions
1

In the definition of the square block we use the side length variable, the value of which will be set in the when this sprite clicked script by ask and answer.

In the script for the Beetle each square can have the same colour or may have different pen shades or different pen colours, pupils can choose.

Pupils should start using the vocabulary: The sprite asks for ... then saves or keeps the answer (or answered value) in a variable ...

Alternative solution with number of floors and side length set at random, without any asking: Carefully choose an appropriate minimum and maximum for each value, including the ranges for x position and y position for random jumping.

pen down
set number of floors \vee to pick random 5 to 15
set side length ∇ to pick random 8 to 14
tower

(5)

