MATH + CODING, Grades 6-10

in a collaborative learning setting

by George Gadanidis, Western University

OVERVIEW
This session will introduce a research-based resource ' BOOK A Tashr Rossurce
offering: MATH + CODING
- TEAMS
— low floor & high ceiling tasks Hages 010
— coding starting points to bring math to life » -
i A Low “um",\;z‘\‘\:\u A
dynamically | o S conet e
— conceptual surprises & insights e
— arevitalized classroom culture = a v :

......

Participants will receive a free PDF copy of the
resource, Math + Coding Teams, Gr. 6-10.

If you find this resource useful, you may book a free 45-60 minute online session
for your district leads & teachers, and receive a free district licence.

PRESENTER

George Gadanidis is professor of mathematics education at Western
University.

He has worked for many years in research and outreach classrooms
in Ontario (as well as in Brazil), collaborating with educators to
design mathematics experiences that offer students a sense of
mathematical wonder.

You may see more about his work at imaginethis.ca

https://imaginethis.ca/

MATH + CODING TEAMS S
MATH + CODING

TEAMS

Math + Coding activities offer: ——

Rich math + coding tasks

Low floor, high ceiling engagement

Conceptual understanding \
Collaborative learning \/

Activities are based on classroom research. N il /

USING THIS RESOURCE

Math + Coding Teams may be used in 2 complementary ways:

For mathematics education, to bring math concepts and relationships to life dynamically
through code.

For computer science education, to introduce coding concepts in the context of solving
mathematics problems.

The tasks may used as:
Collaborative team activities.
Extension or enrichment activities.

Starting points for project-based learning.

Math + Coding Teams includes 2 Books:

Book A (120 pages) is designed as a teacher resource. It contains: (a) Student Tasks & (b)
Teacher Notes (and solutions).

Book B (56 pages) is designed as a student resource. It contains only the Student Tasks.
Book B is intended as a resource that may be shared with students.

ORGANIZING TEAMS

Teams of 2-4 students.
* A non-competitive atmosphere.
Collaborative problem-solving.

* A sense of common purpose.

No team member left behind.

A culminating sharing of learnings and wonderings.

LOW FLOOR, HIGH CEILING LEARNING

Math + Coding Teams tasks are designed to offer all students starting points for engaging
mathematically and with code.

Tasks also offer opportunities for students to extend their learning by asking their own
questions and using code to investigate new directions.

Keep the following in mind as you support students in their learning.

* Code that works. Notice that students are
given some code that works.

* Solving puzzles. The activities often involve
editing this code to create different
representations, such as drawing dots for
different triangular numbers, or drawing dots
for different polygonal numbers (as shown on
the right).

+ Temptation to explain. There will be a
temptation to explain the code to students, or
to start by teaching them the different parts of
code. Please let students learn by experiencing
the pleasure of problem solving, surprise and
insight.

* Understanding code. By solving such
problems, students learn about the meaning
and purpose of various code blocks, and start to
learn how to write their own code.

* Understanding mathematics concepts. The
code dynamically represents mathematical
concepts and relationships. This brings math
concepts to life, makes them manipulable, and
gives them a tangible feel.

* Extending tasks. Encourage students to ask and
investigate their own questions and, if they are interested, to work in more than one
coding environment. Most tasks are presented in both Scratch and Python.

CONTENTS

Math + Coding Teams

Polygonal Numbers + Scratch

— Student Task
— Teacher Notes

E

-

N
LB
1
L

-»

theeid

RN

il
-

2. Golden Ratio + Scratch

— Student Task
— Teacher Notes

28

3.A Sumerian Triples + Scratch

— Student Task
— Teacher Notes

88

3.B Sumerian Triples + Python

— Student Task
— Teacher Notes

4 A Infinity + Scratch
— Student Task
— Teacher Notes

4.B Infinity + Python
— Student Task
— Teacher Notes

[&0 |
datance X170

A P

£& 88

Math: Growing patterns;
geometric patterns; algebraic
expressions; polygon properties

Scratch: Turtle graphics; repeat;
sub-programs; variables; lists

Math: Growing patterns;
geometric patterns; algebraic
expressions; history

Scratch: Turtle graphics; repeat;
sub-programs; variables; lists

Math: Side relationships of right
triangles; “Pythagorean” triples;
graphical representations;
history; [complex numbers;
vectors]

Scratch: Nested repeat;
conditional statements; sub-
programs; variables; lists
Python: Lists; nested repeat;

conditional statements; 2D plots;
[3D plots]

Math: Visual representations of
fractions; shrinking patterns; limit
of an infinite series; history
Scratch: Turtle graphics; sub-
programs; variables; sprite
motion

Python: repeat; variables; 2D
plots; tabular output

5.A. Linear relations + Scratch

— Student Task 59

— Teacher Notes 63
5.B Linear relations + Python

— Student Task

— Teacher Notes

6.A. Finding Primes + Scratch

— Student Task St o¢ prames 80
— Teacher Notes - — 86
6.8 Finding Pri Python » g
) nding Primes + on °
— Student Task N SV
— Teacher Notes : E 98
. D
t; e —— |
7.A Estimating Pi + Scratch
— Student Task 102
— Teacher Notes 111
7.B Estimating Pi + Python
— Student Task 115

— Teacher Notes 119

Math: Linear & non-linear
relations; “operations” on linear
equations; graphical
representations of relations
Scratch: Nested repeat;
conditional statements; sub-
programs; variables

Python: Lists; nested repeat;
conditional statements; 2D plots

Math: Prime numbers; number
theory; algebraic expressions;
modulo arithmetic; history
Scratch: Repeat; conditional
statements; sub-programs;
variables; code efficiency;
modulo arithmetic

Python: Lists; repeat; conditional
statements; 2D plots; code
efficiency; modulo arithmetic

Math: Meaning of Pi;
experimental probability
Scratch: Repeat; lists;
conditional statements; sub-
programs; variables

Python: Lists; repeat; conditional
statements; 2D plots

